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STRONG LAWS OF LARGE NUMBERS FOR ARRAYS OF

ORTHOGONAL RANDOM VARIABLES )

By F. Moricz of Szeged

and

R. L. Taylor of Athens, Georgia
* and Chapel Hill, North Carolina

§1. 'Hilbert Space Valued Random Variables

Let H be a separable Hilbert space with inner product denoted by

(','). By a rowwise orthogonal array we mean a set {X nk: k - 1,2,...,n;

* ( )[n= 1,2,...} of random variables (in abbreviation: r.v.'s) such that

aiI 2 EIX02 1<c" • O~nk: = E nkU

and

(1.2) EE(Xnk, X)] - 0 (k+j; k,j=1,2,...,n; n-l,2,...).

Details on basic properties and measurability considerations for Hilbert

and Banach spaces are available in the literative cited in the references.

We will consider the means

,_ n
(1.3) n na Xnk (n 1,2,...)

1) This research was completed while the first named author was a

visiting professor at the University of Wisconsin, Madison, in the academic
year 1985-86. Also, this research was supported in part by the Air Force
Office of Scientific Research under Contract No. F 49620 85 C 0144 while the
second named author was at the Center for Stochastic Processes, University
of North Carolina, Chapel Hill, N.C.
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where a is a fixed positive number. Following Hsu and Robbins (1947) we

say that the sequence (n } converges to zero completely, in sign lim n - 0
n-

completely, if for every e > 0,

Z PEBIn I > < 0.
n-I

By virtue of the Borel-Cantelli lemma, complete convergence implies

almost sure (in abbreviation: a.s.) convergence. The converse is not true

in general, except the case when the Cn are independent.

First we present a simple sufficient condition to ensure complete

convergence.

Theorem 1. Let {XnkI be a rowwise orthogonal array in a separable

Hilbert space H. If

1 n 2(1.4) E -- Zak

n1I  n k1

for some a > 0, then

(1.5) lim Cn = 0 completely.
n-ma

Proof. By (1.1) and (1.2),

2 ( n n
(1.6) E1IC I I EE( Xk : )]

n n2a k-i nk' jl nj

1 n n

2a" " T- E -(Xnk, X )]
n k-i j-1 nj

1 n 2

n kl nk "



3

Hence, by (1.4),

00 2 0 0 1 n 0 22 E IICn  = Z <Z
n= [ n=1 n a k-1 nk <

This implies (1.5) v -he Chebyshev inequality.

A simple conse- .e is the following.

Corollary 1. Let {X nk} be a rowwise orthogonal array in a separable

Hilbert space H such that

(1.7) onk < 'kk (n = k+1, k+2, ...; k - 1,2,...).

If

(1.8) 
k

k-i k2 a -l1

for some a > J, then we have (1.5).

* Proof. In fact, (1.7) and (1.8) imply (1.4) in case a > as follows

1 n 2 1 n 2

ny1 n2a k1 nk- n-i 2a k-i kk

kk nEk 2a M 02a-I

~Remark 1. The weaker condition

2

(1.9) kk<
k-i k2a

implies only the complete convergence of the lacunary subsequence

{C2p: P - 0,,...}. Indeed, by (1.1), (1.2), (1.7) and (1.9),
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1 2 m 2 2

p0O 2p P-0 2 cp k-i pl

__O 2p2 C 2< E % E kk x a kk 2
P 2MO '' k-1 kai p:2P>k 2

2
" Okk

-0(1) E - < -.
k-i k

Hence, the Chebyshev inequality yields the complete convergence of { 2p}.

Now the surprising fact is that Theorem 1 is the best possible

even

(i) for real valued (H - R) r.v.'s; and even

(ii) if we require orthogonality not only within each row but between

any two rows in the array {Xnk} .

Theorem 2. Let {ank} be an array of nonneRative numbers such that

(11) 0 1 n 2

n n-i kil an e

for some a > 0. Then there exists an array {X nk} of real valued r.v.'s

such that

-' (1.11) ECX nk I aO,

(1.12) EEX2] M 02
EXnk nk'

(1.13) EEXnkmj 0 (n + m or k + J;

k - 1,2, ...,n; J=1,2o,...,m; n,m = 1929,...)
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and

(1.14) lim sup RnI pointwise.
n-

Proof. In the counterexample we will construct, the underlying

probability space is the unit square I2 = [0,1) x [0,1) with the Borel

measurable subsets and Lebesgue measure.

By (1.10), there exists a sequence {en} of positive numbers tending

to zero such that

2 E n n 2

(1.15) < 1 (n = 1,2,...)
n5 n 2 j=l nj -

and

(1.16) ZI cn1I  n

We define

2n-I k 2
dnk l E cm n Z an* (k = 1,2,...,n; n = 1,2,...)
nk: ml'1 n 2mjul nj

0
where we mean Z -0 in case n-1. Denote by (,] the greatest integer

m=1
part. Define the function fnAk(Wl) by

(1.17) fk(Wl): M a.- I n(WE) [0, 1)
An E nkA

where In means the indicator of the set Jnk and where Jnk [dn ,k-I

(d n,k1] , dn,k - [dn,k]) when [dn,k.1 - [dnk] and Jnk = [0, dnk-[dnk])U

[d n,k-i d n,k.1],1) when [dn,kJl + (d n,k. By (1.15) and (1.17),

(d -[we (nI ~
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(.8 E f2f 2~ (W 2

(1.1) E nk] =4 nk ~~1  nk

(1.19) E~f k f jJ = l f nk (W I f nj( d,= 0 (k +1 j)

We will apply the Rademacher functions {r n (w 2): n - 1,2,....1

defined by

2 k-
n( :- -i (_l)kl Ikn n) (W2) W 2 C [0,1).

Obviously, {r n} is a sequence of independent, identically distributed

r.v. '5 with

(1.20) E Cr] 0 and E Cr 2 = 1 (n - 1,2,...).
n n

-VThe role of the Rademacher functions in the theory of Banach spaces is

well-known (see, e.g., Schwartz (1981)).

Finally, we set

X n (W..w.j 2 f k (W )r n(w 2) (k = 1.2,...,n: n , 1,2....

By construction, {f nk I and (r n are independent of each other. Thus,

by (1.18) -(1.20),

EXnk I E[f ]k E Er n] - 0,

E[X 2 1 E~f 2  E Er 2 ] M Gr2
nk nk n nk'

EEXkXj =E~f f .]E [r] =0 (k + J),
n jnk nj n

EEX kX] -j E~f kf mJ] E Er nr J 0 (n + in),
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which in turn provide relations (1.11) - (1.13).

By (1.15) and (1.16), each w 1 [0,1) is in Jnk for infinitely many

n, but for exactly one k when it is. Thus, for each (wI , w2) 12

n

C ~ I- = I_

n"

n- rn(W2 =- infinitely often,

n n n

whence (1.14) follows.

§2. Extensions

A) We can consider the following generalized array of r.v. 's

Xl, Xl2, ... , xlp 1

X2 1 ' X2 2 ' .. , 2P2

............. ee..,..

Xn, X n2, ..., X

where (pn: n - 1,2,...) is a not necessarily increasing sequence of

positive integers. In case pn = n for all n, we get an ordinary (triangular)

array.

B) We can substitute any sequence (A(n): n = 1,2,...) of positive

numbers for n in definition (1.3).
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C) We can require only quasi-orthogonality (see, e.g. M6ricz (1977))

instead of orthogonality. More exactly, we assume the fulfillment of (1.1),

but instead of (1.2) we only need the existence of a generalized array

{Pnk: k - 1,2,...,pn; n = 1,2,...) of nonnegative numbers such that

Pn

(2.1) Z p 'C (n 1.2,...)k-i Pnk - '

where the constant C does not depend on n, and

(2.2) IEI(Xnk, Xnj )]I n,lk-jI+l ank Onj

•(k~j =1,2,...,p Pn; n =1.2,...).

In the particular case when pnl = 1 and pnk 0 otherwise, we get ordinary

orthogonality.

It is known (see again Moricz (1977)) that (2.1) and (2.2) imply

that
Pn 2Pn 2

E [II Z X ] < (1 + 2C) Z 0  (n - 1,2....
k=l nk k=l nk

Now the fulfillment of this moment inequality is crucial in the proof

of Theorem 1.

To sum up, the following theorem can be proved along the same lines

as Theorem 1.

Theorem 1A. Let {Xnk: k - 1,2,...,pn; n = 1,2,...} be a generalized

array in a separable Hilbert space H satisfying conditions (1.1), (2.1)

and (2.2), and let (A(n): n - 1,2,...) be a sequence of positive numbers.

if
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(2.3) 0 1 n a2

n=1 X2 (n) k= nk

then

1 Pn

(2.4) lim 1k X 0 completely.
n-o Xn)k-I nk

Even in this very general setting, condition (2.3) is the best

possible one to ensure (2.4). The way we proved Theorem 2 makes it possible

to prove the following more general theorem.

Theorem 2A. Let {ak: k = 1,2,...,p; n = 1,2 .... } be a generalized

array of nonnegative numbers such that

I Pn 2)

12

n=1 \2(n k_ nk

Then there exists a generalized array nX of real valued r.v.'s such that
nk,

conditions (1.11) and (2.12) are satisfied,

E[X A 1 0 (n + m or k + j;

k ",2,...,p nj12..... pm; n.m 2.....

and
Pn

lim sup -L Xk pointwise.
n-'- ~n k.,-i

§3. Banach Space Valued Random Variables

Many authors have contributed to the development of the theory of

Banach space valued r.v.'s. However, we will only need reference to the

-X6 .
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type p spaces of Hoffmann-J6rgensen and Pisier (1976), and the orthogonality

moment inequalities of Howell and Taylor (1981). Additional details on

basic properties and measurability considerations are available in the

literature cited there.

Orthogonality in the general Banach space situation becomes much

more problematic as the following example illustrates.

Example 1. Let 1 < q < - and Zq denote the set of sequences

(x k: k - 1,2,...) of real numbers such that

1(x k )1: k E 1 x kil/ < 00•
k-i

It is well-known that Zq with the usual vector operation and the norm II-1

defined above is a separable Banach space. Setting

Xnk: = (0,...,O,rk,0,...) (k = 1,2,...,n; n - 1,2,...)

where the {rk} are the Rademacher functions, we get an array {X nk con-

sisting of rowwise independent, zero mean r.v.'s. So, they should be

rowwwise orthogonal with respect to any reasonable definition of ortho-

gonality. However, in trying to develop (1.6), we observe that

+ n nU2 ( n lq2q n2/q

E C 11 X = - ( IrEC Z)2 /qq
k=l n k=1

while
n 2
Z EC II Xnkl 3 = n.
k=i

Thus, for 1 < q < 2 the inequality

1 n 2 q n 1 n 2
EEIC k = -I X' X n-" n n E C 11X 1

n 2tk-1 n n 2a n 2 n 2mk-1



goes in the wrong direction, and thus we are unable to duplicate the

results of Section 1.

Hoffmann-J6rgensen and Pisier (1976) addressed this problem by

defining a separable Banach space B to be of type p. 1 <p : 2, if for

every sequence {Xk: k - 1,2,.. .} of independent, zero mean r.v.'s in

B with

(3.1) EEUXkIP) <

and for every n > 1, we have

n n
(3.2) EEI Z _Xk1] <C E EEIXklp]

k-l k-i

where C is a constant not depending on n and {Xk}.

Clearly, every separable Banach space is of type 1 and every separable

Hilbert space is of type 2 even with equality holding in (3.2) for C - 1.

Moreover, the EP spaces are at most of type min (2,p), 1 < p < -.

Howell and Taylor (1981) used James type orthogonality in defining

a sequence {Xk} of r.v.'s in a separable Banach space B to be orthogonal

in LP(B), 1 < p < -, if (3.1) is satisfied for all k and

n n+m
(3.3) EEII C a '(k) X(k) lip] E [1k E Ia ()X (k)1P]

for all sequences {akI of real numbers, for all permutations n of the

positive integers {1,2,...,m+n}, and for all n and m.

It is clear that orthogonal r.v.'s in a separable Hilbert space

satisfy (3.1) and (3.3) with p - 2. It is not hard to see that the



12

r.v.'s defined in E q in Example 1 satisfy (3.1) and (3.3) for any p,

1 < p1 2 . Note, q need not equal p.

Remark 2. Proposition 2.1 of Howell and Taylor (1981) states that a

separable Banach space B is of type p if and only if (3.2) is satisfied

for all n and for all sequences {Xk} which are orthogonal in LP(B).

Inequality (3.2) was actually established for the weaker concept

of unconditional semi-basic (ucsb) r.v.'s but in this case the constant

C depends on the particular ucsb sequence {Xk}. On the other hand, in the

case of orthogonal r.v.'s the constant C depends only on the space B.

To illustrate the generality of the concept of orthogonality in

Banach spaces we present the following

Example 2. Let 1 < p < 2 and let Y be a Borel measurable, real valued

function defined on [0,1) such that

E YJP3 fI  j Y(W 1)jp dw 1 <

but

E[Y 1r y2i )dw .

Define for (w1, W2 ) c [0,1) x [0,1) f 12

Xn(wi, W2 ): - Y(W ) rn (W2) (n - 1,2,...)

where the (rn} are the Rademacher functions.

Then the r.v.'s X n} are not orthogonal in the classical sense since

En X m I is not defined. Indeed,

EEIXnXm - EEY 2trnrm] ECy 2

I! P Or' " 1 15 11 11
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On the other hand, the r.v. 's [X n} are James type orthogonal in L (I )

This is a consequence of the fact that the r.v.'s {r }j are independent and

have zero mean, and therefore

n
E E a w(k) X I~)1

k 1

n 
pEC YJP E 11k-i1 n(k ) r(k)I

n+m 
p< E [ YtJ E [11 1 a r l

k-i wr(k) r. W

n+m
k-i 1 arr(k) X (k) lp.

Now if {X -k - 112,...,n; n 1 ,2,....} is an array of rowwisenk*

orthogonal (in LP(B)) r.v.'s in a Banach space B of type p, then it

follows from (3.2) that

1-E IL EX <i]: 1 - E[IIX lip]
EEInI- k= nk n-i n~o k-i nk

and the following form of Theorem 1 is obtained.

Theorem 1B. Let {X k}I be an array of rowwise orthogonal (in LP(B))

r.v. 's in a Banach space B of type p for some 1 <p <j 2. If

(3.4) E 1 1 i
n=i n~ k-i nk

-for some a > 0, then we-have (1.5).

Remark 3. Since the real line R is of type p for each 1 :1 p 1 2,

Theorem 1B extends both the concept of orthogonality for real valued r.v. 's
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and the range of applicable moment conditions which yield (1.5).

Sufficient condition (3.4) is also best possible even for real valued

r.v.'s as the next theorem shows.

Theorem 2B. Let {(T nk) be an array of nonnegative real numbers such

that
n n

n-l np  k=l nk

for some 1 < p < 2 and some a > 0. Then there exists an array (X nk of

real valued r.v.'s such that conditions. (1.11) and

EE IXnkP] . TP
tnk

are satisfied, thev are rowwise orthogonal in LP(I 2 ) and we have (1.14).

For the proof of Theorem 2B, replace (1.15) by

EP nn Z p.
C := -- 'n < 1 (n = 1,2,...)

n J l nj -

and follow the steps in the proof of Theorem 2 with d = n-i c

ep k nk Z 1

+ n Z TP.. The rowwise orthogonality in LP(I 2 ) follows since
n pa j=1 nj

Jnl' "'* J nn are disjoint subsets. It also follows that Xn, .. nn

are orthogonal in the usual sense. Banach space versions of Corollary I

and Theorems 1A and 1B are also available with similar conditions.
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